සංචාරකයා ඉතාම අඩුවෙන් තමයි කාලීන ලිපියක් ලියන්නේ. චෙස් ඔලිම්පියාඩය ගැන ලියන්න හිතුවේ මේ ගැන ජාතික මෙන්ම අන්තර්ජාතික ජනමාධ්‍ය වල තිබුණු අඩු අවධානය හින්දයි. ලෝකයේ වඩාත් ප්‍රසිද්ධ පාපන්දු, බේස්බෝල්, පැසිපන්දු, ටෙනිස්, ගොල්ෆ් වගේ ක්‍රීඩා එක්ක බැලුවාම චෙස් ක්‍රීඩාව ඉතාම ළදරු මට්ටමක තියෙන්නේ.

මෙම තරඟාවලිය පැවැත්වුණේ බටහිර දිග රුසියාවේ තියෙන Khanty-Mansiysk නගරයේදියි.  රටවල් 153ක සහභාගීත්වයෙන් පැවති මෙම තරඟාවලියේ අංශ දෙකක් තිබුණා. ඒ තමයි විවෘත අංශය සහ කාන්තා අංශය.

තරමක් දුරට තියුණු මුහුණුවරක් ගත් විවෘත අංශයේ ශූරතාවය යුක්‍රේනය විසින් දිනා ගත් අතර දෙවන ස්ථානය රුසියානු එක කණ්ඩායම විසින් දිනා ගත්තා. තුන් වන ස්ථානයයට පත් වුනේ ඊශ්‍රායෙල් කණ්ඩායමයි. පසුගිය චෙස් ඔලිම්පියාඩ දෙකේ ලෝක ශූරයන් වූ ආමේනියාවට මෙවර හිමි වුනේ 7 වන ස්ථානයයි. යුක්‍රේනියානු ජයග්‍රහණයේ නියමුවා වුනේ පළමු පුවරුව ක්‍රීඩා කරමින් තරඟ වට 10කින් ලකුණු 8 ක් ලබා ගත් වැසිලි ඉවන්චුක් (GM Vassily Ivanchuk).

කාන්තා අංශයෙන් නම් රුසියානු එක කණ්ඩායමට තරඟයක් තිබුනේ නැති  තරම්. එක තරඟ වටයක් ඉතිරිව තිබෙද්දීම ජයග්‍රහණය තහවුරු වෙලා ඉවරයි. දෙවන ස්ථානය චීනයටත් තෙවන ස්ථානය ජෝජියාවටත් හිමි වුණා. මෙම අංශයෙන් පසුගිය වතාවේ ලෝක ශූරයන් වුණේ ජෝජියාවයි.

අවසාන ප්‍රතිඵලය දකිද්දී සංචාරකයාට හිතිච්ච දෙයක් තමයි කොහොමද සෝවියට් සමූහාණ්ඩුව චෙස් ක්‍රීඩාවෙන් මෙච්චර ඉදිරියට ආවේ කියලා. අද සෝවියට් සමූහාණ්ඩුව නැතත් විවෘත අංශයේ මුල් ස්ථාන 10න් 4කටත් කාන්තා අංශයේ මුල් ස්ථාන 10න් 5කටත්  හිමිකම් කියන්නේ බිඳුනු සෝවියට් සමූහාණ්ඩුවට අයත් රටවල්. අවසන් වට වලදී පසුබෑවත් අසර්බයිජානය සහ ජෝජියාවත් විවෘත අංශයේ  මුල් වටවලදී සෑහෙන ඉදිරියෙන් හිටියා. ඊළඟට දක්ෂතා දක්වලා තියෙන්නේ නැගෙනහිර යුරෝපියානු රටවල්. වඩාත් පැහැදිලි වෙන්න පහත වගුව සහ සිතියම බලන්න.

සිතියමෙන් දැක්වෙන්නේ අංශ දෙකේම මුල් ස්ථාන 10ට පැමිණි රටවල භූගෝලීය ව්‍යාප්තිය.

මෙම තරඟාවලිය නියෝජනය කරමින් විවෘත අංශයෙන් තරඟ වැදුණු ශ්‍රි ලංකා කණ්ඩායම 104 වන ස්ථානයටත් කාන්තා 75 වන කණ්ඩායම ස්ථානයටත් පත් වුණා. ඒ කණ්ඩායම් දෙකටම සංචාරකයා සුබ පතනවා. මෙම තරඟාවලියට අදාළ විස්තර තරඟාවලියේ නිල වෙබ් අඩවියෙන් ගන්න පුළුවන්.

http://www.ugra-chess.com

අර මැක්කගේ කතාව වගේ සංචාරකයාගේ ලිපි බොහෝ දුරට ගණිතයට සම්බන්ධයිනේ. මේ ලියන්න යන්නේ ගණිතයේ Topology කියන අංශයට අදාළ අමුතු සිදධාන්තයක් ගැනයි. මේක ලියන්න හිතුනේ අර උඩින් දක්වපු සිතියම පාට කරලා ඉවර උනාම. මේ ප්‍රමේයෙන් කියන්නේ තලයක අඳින ලද ඕනෑම  සිතියමක යාබද රටවල් වලට එකම පාට නොවෙන්න  පාට කරන්න අවශ්‍ය වෙන්නේ උපරිම වශයෙන් පාට 4යි කියලා. එක් පූර්ව අවශ්‍යතාවයක් තමයි එක රටක භූමි ප්‍රදේශය සන්තතික [contiguous] වීම. අනික තමයි මෙහි යාබද රටවල් කියන්නේ පොදු මායිමක් සහිත රටවල් වලටයි. ලක්ෂ්‍යයකදී හමු වන රටවල් මෙයට අදාළ නෑ. කතාව තේරුම ගන්න බලමු පහත රූප සටහන් එක්ක.

පළවෙනි රූපයේ රතු පාටින් දැක්වෙන කළාප දෙක එකම රටකට අයිති නම් මෙම ප්‍රමේය අදාළ වෙන්නේ නැහැ. අපේ ලෝක සිතියම ගත්තත් මෙහෙම රටවල් පිහිටලා තියෙනව. දෙවෙනි රූපයේ තියෙන A සහ B රටවල් දෙක යාබද රටවල් විදියට ගණන් ගන්න බෑ දෙවෙනි පූර්ව අවශ්‍යතාවය අනුව. මොකද ඒ රටවල් දෙකට තියෙන්නේ පොදු ලක්ෂ්‍යයක් විතරයි. පොදු මායිමක් නෑ.

“වර්ණ හතරේ” ප්‍රමේයෙන් කියන්නේ ඉහත අවශ්‍යතා දෙකම  සපුරන ඕනෑම සිතියමක් යාබද රටවල් එකම පාට නොවෙන්න පාට කරන්න අවශ්‍ය වෙන්නේ පාට හතරයි කියලා. උදාහරණයක් විදියට පහතින් දැක්වෙන රූපය බලන්න. වර්ණ 4කින් මුළු සිතියමම පාට කරලා තියෙනවා, හැබැයි යාබද රටවල් වලට එකම පාට නෑ.

මෙම ගැටළුව සම්බන්ධ අදහස මුලින්ම ඉදිරිපත් කරලා තියෙන්නේ දකුණු අප්‍රිකානු ජාතික ගණිතඥයෙක් සහ උද්භිද විද්‍යාඥයෙක් වන Francis Guthrie.  විශ්ව විද්‍යාලයීය ශිෂ්‍යයකුව ඉද්දී ඔහු වරක් එංගලන්තයේ ප්‍රාන්තවල සිතියමක් පාට කරන විට දැකලා තියෙනවා ඉහත සඳහන් කළ විදියට සිතියම පාට කරන්න අවශ්‍ය වර්ණ 4යි කියලා. ඔහු මෙය තමාගේ සොයුරු  Fredrick හරහා සුප්‍රසිද්ධ ගණිතඥයෙක් De Morgan වන වෙත යොමු කරලා තියෙනවා. මතක ඇතිනේ De Morgan, අර කුලක වාදයේ, බූලියානු වීජ ගණිතයේ එහෙම පාවිච්චි වෙන De Morgan නියම ඉදිරිපත් කලේ.

මේ සිද්ධිය වෙන්නේ 1852 දී. De Morgan හරහා මෙම ගැටළුව ගණිතඥයින් අතර පැතිරෙන්න ගත්තා. හැබැයි 1976 වන තුරුම මෙය අනුමිතියක් (Conjecture) ව්දියට තමයි තිබුණේ. කිසි කෙනෙකුට සාධනයක් ඉදිරිපත් කරන්න බැරි වෙලා තියෙනවා. අතරින් පතර සාධන කිහිපයක් ආවත් පසුකාලීනව ඒවගේ වැරදි හම්බ වෙලා තියෙනවා.අනුමිතියක් කියන්නේ බැලූ බැල්මට සත්‍යයක් විදියට පෙනෙන එහෙත් විධිමත් සාධනයක් නොමැති කරුණකුයි. මීට කළිනුත් සංචාරකයා ඒ වගේ අනුමිතින් දෙකක් ගැන කතා කරල තියෙනවා මතක ඇතිනේ. මතක නැත්නම් මෙන්න මේ යොමු දෙකන් බලන්නකෝ. (Kepler’s Conjecture, Collatz Conjecture)

දැනට 1976 දී ඉලිනොයිස් විශ්ව විද්‍යාලයේ Kenneth Appel සහ Wolfgang Haken විසින් පරිඝනක ඇසුරෙන් ඉදිරිපත් කරපු සාධනය නිවැරදි යයි පිළි ගැණෙනවා.

Advertisements