ප්‍රථමක සංඛ්‍යා තරම් ගණිත ලෝකයේ කතාබහට ලක්වුණු ඉලක්කම් වර්ගයක් තවත් නැතුව ඇති. ප්‍රථමක සංඛ්‍යා ගැන ලියන්න බොහෝ කරුණු තියෙනවා. මේ ලිපියෙන් ලියන්න යන්නේ ප්‍රථමක සංඛ්‍යා සම්බධයෙන් එන සුප්‍රසිද්ධ අනුමිතින් දෙකක් ගැනයි.

පහේ ශිෂ්‍යත්ව පංතිවලදී ඉගෙන ගත්තා මතක ඇතිනේ එක හැරුණු කොට අනික් ඕනෑම ඉලක්කමක් ප්‍රථමක සංඛ්‍යා එකක හෝ කිහිපයක් ගුණිතයක් විදියට ලියන්න පුළුවන් බව. හැබැයි මේකට අංක ගණිතයේ මූලික සිද්ධාන්තය [Fundamental Theorem of Arithmetic] කියලා කියනවා කියලා සංචාරකයා දැන ගත්තේ පාසල් ජීවිතයත් හමාර වුණාට පස්සේ. මෙහි සාධනය මුලින්ම යුක්ලිඩ් විසින් ඉදිරිපත් කරලා තියෙනවා. වඩාත් නිවැරදි සාධනයක් පසු කාලීනව ෆෙඩ්‍රරික් ගවුස් විසින් ගොඩ නඟලා තියෙනවා. ඊළඟට කියන්න තියෙන්නේ ප්‍රථමක සංඛ්‍යා අනන්ත සංඛ්‍යාවක් තියෙනවා කියන එකයි. මේකටත් බොහොම අපූරු සරල සාධනයක් ඉදිරිපත් කරල තියෙනවා යුක්ලිඩ්. දැන් ලියනවා කියපු අනුමිතින් දෙකට එමුකෝ.

පළමු අනුමිතිය තමයි, නිවුන් ප්‍රථමක අනන්ත සංඛ්‍යාවක් තියෙනවා කියන එක (Twin Prime Conjecture). නිවුන් ප්‍රථමක සංඛ්‍යා කියලා කියන්නේ වෙනස 2ක් වෙන ප්‍රථමක සංඛ්‍යා වලටයි.

උදාහරණයක් විදියට 3 සහ 5 දැක්විය හැකියි.

වඩාත් විශාල උදාහරණයකට යනවා නම් 7877 සහ 7879 දැක්විය හැකියි.

ඊටත් වඩා විශාල උදාහරණයකට යනවා නම් 15485651 සහ 15485653 දැක්විය හැකියි.

මේ විදියට තමන්ට කැමති තරම් විශාල නිවුන් ප්‍රථමක යුගල හොයා  ගන්න පුළුවන්. පරිඝනක ඇසුරින් මෙසේ අවශ්‍ය තරම් විශාල ප්‍රථමක යුගල සොයා ගන්න පුළුවන් වුණාට මෙවැනි යුගල අනන්තයක් තියෙනවා කියලා තාම ගණිතමය සාධනයක් ඉදිරිපත් වෙලා නෑ. මේක මුලින්ම ඉදිරිපත් කළේ කව්ද කියන එක නම් ට්කක් විවාදාපන්නයි. සංචාරකයා ඒ ගැන කියන්න වැඩිය දන්නේ නැති නිසා මෙහි ලියන්නේ නෑ.

දෙවෙනි අනුමිතිය තමයි  Goldbach’s conjecture කියන එක. මෙයින් කියන්නේ ඕනෑම ඉරට්ටේ සංඛ්‍යාවක් [2 හැර] ප්‍රථමක සංඛ්‍යා දෙකක එකතුවක් විදියට ලියන්න පුළුවන් කියලයි.

උදාහරණ විදියට

24=23+2

100=47+53

100000= 1103+98897

මෙය මුලින්ම ලොවට ඉදිරිපත් කරලා තියෙන්නේ ජර්මානු ජාතික ගණිතඥයෙක් වන Christian Goldbach. හැබැයි මුල් ඉදිරිපත් කිරීම නම් ටිකක් විතර වෙනස්, මොකද ඒ කාලේ 1ත් ප්‍රථමක සංඛ්‍යාවක් විදියෙට ගණන් අරගෙන තියෙන නිසා.

ප.ලි: කළින් දවසක් ලියපු සිප ගන්න වෘත්ත ලිපිය මතක ඇතිනේ. ඒ ලිපිය ලියද්දී එහෙම සැකසූ වෘත්ත ඇසුරෙන් රටාවක් දාන්න හිතන් හිටියත් කාල වෙලාව මදි නිසා කර ගන්න පුළුවන් වුණේ නැහැ. Mathematica එක්ක පොඩ්ඩක් ඔට්ටු වෙලා එකක් හදා ගත්තා. ඒක තමයි මේ පහතින් තියෙන්නේ.


Advertisements