අද ලිපියෙන් කියන්න යන්නේ කුරුස කොඩිය, එහෙමත් නැත්නම් බ්‍රිතාන්‍ය කොඩියේ නම තියෙන ගණිත ප්‍රමේයයක් ගැනයි.  මෙම ප්‍රමේයයට අනුව P කියන්නේ ABCD ඕනෑම සෘජු කෝණාශ්‍රයක් ඇතුළත පිහිටලා තියෙන ලක්ෂ්‍යයක් නම්

AP2+PC2=BP2+PD2

කියලයි.

වඩාත් පැහැදිලි වෙන්න පහත රූපය 1 බලන්න. රූපය දැක්කාම නම ආපු හැටිත් ආයේ අමුතුවෙන් කියන්න ඕනේ නෑ නෙ. ඔප්පු කරන්න නම් පයිතගරස් ප්‍රමේයය හතර සැරයක් පාවිච්චි කරන්න තියෙන්නෙ.

AP2 =Ax2+Aw2 …………….. (1)

PC2=xB2+wD2 …………….. (2)

BP2=xB2+Aw2 …………….. (3)

PD2=Ax2+wD2 …………….. (4)

 


රූපය 1

(1) + (2) න්

AP2 + PC2 = Ax2+Aw2 +xB2+wD2 = (xB2+ Aw2) + (Ax2+ wD2)= BP2 + PD2

හැබැයි ප්‍රමේයයෙන් මෙහෙම කිව්වට, මෙම සම්බන්ධතාවය සත්‍ය වෙන්න P ලක්ෂ්‍යය සෘජු කෝණාස්‍රය ඇතුළතම තියෙන්න ඕනේ නෑ. සෘජු කෝණාස්‍රයට පිටතින් හෝ, තවත් එහාට ගියොත් සෘජු කෝණාස්‍රය තියෙන තලයට පිටතිනුත් P පවතින විටත් මෙම සම්බන්ධය සත්‍යයයි. ඒ කියන්නේ පහත දෙවෙනි රූපයේ ආකාරයට P පිහිටලා තිබ්බත් මේ සම්බන්ධය ඒ විදියටම හරි යනවා.

රූපය 2

Advertisements