පොත් ප්‍රදර්ශනයේ කතා

2 Comments

අවුරුදු දෙකක්ම මග ඇරුණු පොත් ප්‍රදර්ශනය බලන්න සංචාරකයත් ගොඩ වැදුණා පටන් ගත්ත දවසෙම,ආයෙ දවසකුත් යන්න බලා ගෙන. එතන ඉද්දී වෙලාව යනවා දැනෙන්නෙම නැහැ, මේ සති අන්තයේ යන්නේ සම්පූර්ණම දවස ඉන්න බලාගෙන. කොහොමින් හරි මේ ලියන්න යන්නේ අහම්බෙන් දැකලා ගත්ත පොතක් ගැන සහ සංචාරකයා මුහුණ දීපු එක් සිද්ධියක් ගැන.

එක් ප්‍රදර්ශන කුටියක් තිබුණා ඒකේ ගොඩක්ම තිබුණේ ආතර් සී ක්ලාක් මහත්මයාගේ පොත්වල සිංහල පරිවර්තන. ආතර් සී ක්ලාක් මහත්මයාගේ බොහොමයක් පොත් කියවලා තිබුණත් ටිකක් කැරකී කැරකී හිටියේ ඔහුගේ විද්‍යා ප්‍රබන්ධවලට තියෙන ආසාවටම. එහෙම ඉද්දී දැක්කා පොතක් තියෙනවා “අවසන් සිද්ධාන්තය” කියලා. ලියලා තියෙන්නේ ආතර් සී ක්ලාක් සහ ෆෙඩ්‍රික් පෝල්. සිංහල පරිවර්තනය තත්සරණී බුලත්සිංහල. පසුකවරය දිහා බැලුවාම කතාවේ තියෙන්නේ “ෆර්මාගේ අවසන් ගැටළුව” විසඳන්න උත්සාහ කරන ශ්‍රි ලාංකික තරුණයෙක් ගැන සහ සමකාලීනව පෘථිවියට එල්ල වන පිටසක්වල ජීවීන්ගේ තර්ජනයන් ගැන. ඒ වගේම කියන්න ඕනේ මෙය ආතර් සී ක්ලාක් මහත්මයා ලියපු අවසාන විද්‍යා ප්‍රබන්ධයලු.

ඉතින් දෙපාරක් හිතන්නේ නැතුවම සංචාරකයා පොත මිලදී ගත්තා. ගණිතයට ආසා කරන අය අනිවාර්යයෙන් කැමති වෙන පොතක්. ගණිතයට සම්බන්ධ කතන්දර මෙන්ම විනෝදාත්මක ගණිත ගැටළු කිහිපයකුත් කතාව ඇතුලෙම තියෙනවා. ගන්න කැමති අයට පහත විස්තරය ප්‍රයෝජනවත් වෙයි.

ප්‍රදර්ශන කුටිය – G319

ප්‍රකාශකයින් – S & T Group

මිල – පොතේ ගහලා තියෙන්නේ රු.750 කියලා, හැබැයි වට්ටමක් හම්බ උනා හරියටම ගිය ගාන ඊට අඩුයි.

පොත ගැන වැඩි විස්තරයක් මෙතනදී සංචාරකයා සඳහන් කරන්නේ නෑ, කියවන කට්ටියට අසාධාරණයක් වෙන නිසා. ඉතාම හොඳ පොතක් කියල විතරක් කියන්නම්.

ප.ලි – ප්‍රදර්ශනය බාගෙට බලලා අඳුරු වැටීගෙන එන වෙලාවේ පාරෙන් එහා පැත්තේ රථ ගාලේ නවත්වලා තිබුණු වාහනේ ගාවට ආපුවාම ළඟ හිටපු කෙනෙක් කියනවා ඉස්සරහ රොදේ හුළං බැහැලා යන්න බැරි වෙන තරමට කියලා. බලපුවාම කතාව ඇත්ත. හැබැයි රෝදේ Dust Cap එක තිබුණෙත් නැහැ. වෙලාවට සංචාරකයා ගාවා ජංගම පොම්පයක් තිබ්බා වාහනේ ලයිටර් එක ගහන තැනට ගහලා වැඩ කරන්න පුළුවන්. එහෙම ගහලා ගෙනාවත් හරි ආයෙ නම් හුළං බැස්සේ නෑ දවස් 5ක් ගිහිල්ලත් !!!!

Advertisements

කුරුස කොඩියේ ප්‍රමේයය

9 Comments

අද ලිපියෙන් කියන්න යන්නේ කුරුස කොඩිය, එහෙමත් නැත්නම් බ්‍රිතාන්‍ය කොඩියේ නම තියෙන ගණිත ප්‍රමේයයක් ගැනයි.  මෙම ප්‍රමේයයට අනුව P කියන්නේ ABCD ඕනෑම සෘජු කෝණාශ්‍රයක් ඇතුළත පිහිටලා තියෙන ලක්ෂ්‍යයක් නම්

AP2+PC2=BP2+PD2

කියලයි.

වඩාත් පැහැදිලි වෙන්න පහත රූපය 1 බලන්න. රූපය දැක්කාම නම ආපු හැටිත් ආයේ අමුතුවෙන් කියන්න ඕනේ නෑ නෙ. ඔප්පු කරන්න නම් පයිතගරස් ප්‍රමේයය හතර සැරයක් පාවිච්චි කරන්න තියෙන්නෙ.

AP2 =Ax2+Aw2 …………….. (1)

PC2=xB2+wD2 …………….. (2)

BP2=xB2+Aw2 …………….. (3)

PD2=Ax2+wD2 …………….. (4)

 


රූපය 1

(1) + (2) න්

AP2 + PC2 = Ax2+Aw2 +xB2+wD2 = (xB2+ Aw2) + (Ax2+ wD2)= BP2 + PD2

හැබැයි ප්‍රමේයයෙන් මෙහෙම කිව්වට, මෙම සම්බන්ධතාවය සත්‍ය වෙන්න P ලක්ෂ්‍යය සෘජු කෝණාස්‍රය ඇතුළතම තියෙන්න ඕනේ නෑ. සෘජු කෝණාස්‍රයට පිටතින් හෝ, තවත් එහාට ගියොත් සෘජු කෝණාස්‍රය තියෙන තලයට පිටතිනුත් P පවතින විටත් මෙම සම්බන්ධය සත්‍යයයි. ඒ කියන්නේ පහත දෙවෙනි රූපයේ ආකාරයට P පිහිටලා තිබ්බත් මේ සම්බන්ධය ඒ විදියටම හරි යනවා.

රූපය 2

අසරුවාගේ අමුතු ගමන

4 Comments

පහුගිය දවසක සංචාරකයාට දූරං ගමන් ඒකං චරං කරන්න වෙන හින්දා දඩි බිඩි ගාල පොත් සාප්පුවකට ගිහින් පොතක් ගත්තා කියව කියව යන්න.  හදිස්සියට ගත්තත් තේරීම නරක වුණේ නැහැ.  පොතේ නම තමයි ‘The Eight’ . කතුවරිය වන්නේ අමරිකානු ජාතික කැතරින් නෙවිල් [Katherine Neville].

අට වන ශත වර්ෂයේ බටහිර යුරෝපයේ හිටපු චාලිමේන් අධිරාජ්‍යයයාට මුවර් ජාතිකයින් වගයකින් ලැබුණු චෙස් පුවරුවක් වටා තමයි කතාව ගෙතිලා තියෙන්නේ. මෙම චෙස් පුවරුවේ ශිෂ්ටාචාර ඇතිවීම, විනාශ වීම සම්බන්ධ රහසක් සඟවලා තියෙනවා කියල කියනවා. පොතේ තියෙන්නේ කාල දෙකකදී දෙපිරිසක් මේ රහස හොයා ගන්න දරණ උත්සාහයයි. ප්‍රබන්ධනාත්මක චරිතවලට අමතරව බොහෝ දෙනෙක් අහලා තියෙන ප්‍රසිද්ධ චරිත කිහිප දෙනෙකුත් ඉන්නවා. ඒ අතරින් රුසියාවේ දෙවෙනි කැතරින් රැජිණ, සුප්‍රසිද්ධ චෙස් ක්‍රීඩකයෙක් වුණු පිළිදෝර්, ගණිතඥයෙක් වන ලියොනාර්ඩ් ඔයිලර් , නැපෝලියන් බොනපාට් වැන්නවුන් විශේෂයි.

පොතේ අනික් විශේෂත්වය තමයි, චරිත ගති ලක්ෂණ සහ හැකියාවන් අනුව චෙස් පෙතේ ඉත්තන්ට අනුගත කරලා තියෙන එක. උදාහරණයක් විදියට පොතේ එන වර්තමානයේ, කණ්ඩායම් දෙකක් චෙස් පුවරුව එකලස් කරන්න උත්සාහ කරනවා. ඉතින් දෙපැත්තෙම රජවරු, රැජිණියන්, නයිට් වරු එහෙම ඉන්නවා. සැබෑ ජීවිතයේදී මොවුන් ව්‍යාපාරිකයින්, විද්‍යාඥයින්, පරිඝණක ඉංජිනේරුවන් වගේ විවිධ අයයි.

කොහොමින් හරි අද ලියන්න යන්නේ මේ පොතේ තැන් කිහිපයකම සඳහන් වුණු ප්‍රසිද්ධ ගණිත ගැටළුවක් ගැනයි.  ගැටළුව චෙස් පෙතකට සම්බන්ධයි. මතක ඇතිනේ මීට කලින් දවස් දෙකක සංචාරකයා චෙස් ක්‍රීඩාව සම්බන්ධ ගැටළු ගැන කිව්වා.

පරෙවි කූඩු සිද්ධාන්තය

වි‍යැට ප්‍රශ්නය කෙසේද යත් …………….

චෙස් ක්‍රීඩාවේ එන එක ඉත්තෙක් තමයි නයිට්, එහෙමත් නැත්නම් අසරුවා. නයිට් චෙස් පෙතේ ගමන් කරන්නේ L හැඩයටනේ.

Knight’s Tour කියන මෙම ගැටළුවෙන් අහන්නේ මොකක් හරි කොටුවකින් පටන් අරන් නයිට් කෙනෙකුට එක කොටුවකට දෙපාරක් එන්නේ නැතුව චෙස් පෙතේ කොටු 64ටම යන්න පුළුවන්ද කියන එක. [ගැටළුව 1 කියමු]

විකි පිටුවේ හැටියට නම් මෙම ගැටළුව ක්‍රි.ව 9 වෙනි ශත වර්ෂයට යනකම් යනවා. අර්ධ චෙස් පුවරුවක මෙම ගැටළුවට උත්තරය සංස්කෘත කවියක තියෙනවා කියලා තමයි කියන්නේ.

http://en.wikipedia.org/wiki/Knight’s_tour

ලියොනාර්ඩ් ඔයිලර් තමයි මේ පිළිබඳව අධ්‍යනය කළ පළමු ගණිතඥයා. ඒ නිසාම තමයි ඔහු ‘The Eight’ පොතේ චරිතයක් වෙලා තියෙන්නේ. මෙම ගැටළුවෙන් තවත් ගැටළු දෙකක් ගොඩ නඟන්න පුළුවන්.

ගැටළුව 2 – ගැටළුව 1කේ විදියට කොටු 64ටම ගිය නයිට් කෙනෙකුට 65 වෙනි පිම්ම විදියට ගමන ආරම්භ කළ කොටුවට එන්න පුළුවන්ද?

ගැටළුව 3 – ගැටළුව 2කේ විදියට යන ගමනකට එක් එක කොටුවට 1,2,3,4 ආදී වශයෙන්  අංක යෙදුවොත් මැජික් කොටුවක් ගොඩ නැඟෙන ආකාරයේ උත්තර තියෙනවද?

මෙවැනි ගැටළු අයිති වෙන්නේ ගණිතයේ Graph Theory කියන කොටසට. මෙම ගැටළුව Computer Algorithms ඉගෙන ගත්ත  අයට නම් මතක ඇති. Algorithms Course වල අභ්‍යාසයක් වශයෙන් බොහෝ දුරට මේක දෙනවා. ලිපිය ලියද්දි නම් උත්තර ගැනත් පොඩ්ඩක් ලියන්නම් කියලා තමයි හිටියේ, ලිපිය දිග වැඩිවෙන හින්දා ඒ ටික වෙන දවසකට කල් දානවා.

බක වරක් චක්කරේ හොයා ගෙන විස්මලන්තයට

20 Comments

ඇලිස් දුටු විශ්මලන්තය‘ පොත ගොඩක් දෙනෙක් කියවලා ඇති. මුල් චරිත කිහිපයක් අරගෙන කතාව වෙනස් කරලා චිත්‍රපටියකුත් ආවේ මේ අවුරුද්දේ.  මේ පොත මුලින්ම කියවපු සැරේ සංචාරකයා හිතුවේ මේ මොන පිස්සු විකාරයක්ද කියලයි. පස්සේ තමයි ටිකෙන් ටිකෙන් එහෙන් මෙහෙන් දැන ගත්තේ පිස්සු විකාරය පිටිපස්සේ එක එක තේරුම් තියෙනව කියලා.

ටිකක් විතර අමුතු රීතියකින් ලියලා තියෙන මේ පොත ගැනත්, කතුවරයා ගැනත් ආන්දෝලාත්මක මත කිහිපයක්ම තිබෙනවා. ලුවිස් කැරොල් කියන ආරූඪ නාමයෙන් මේ  පොත ලිව්වේ චාල්ස් ඩොජ්සන් කියලා ඉංග්‍රිසි ජාතික ගණිත ආචාර්යයවරයෙක්.  පොතේ ගණිතමය පසුබිම ගැන තියෙන මතවාදයක් පහත යොමුවෙන් ගන්න පුළුවන්.

http://www.nytimes.com/2010/03/07/opinion/07bayley.html?_r=1

කොහොමින් හරි පොතේ එක තැනකදී ඇලිස් ගුණකිරීම වගයක් කියනවා  “හතර වරක් පහ දොළහයි, හතර වරක් හය දහතුනයි, හතර වරක් හත … දෙයියනේ මේ විදියට මට කවදාවත් විස්සට යන්න බැරි වෙයිනේ”.

දැන් කොහොමද හතර වරක් පහ දොළහ වෙන්නේ? මෙතනදී තියෙන මතය තමයි ඇලිස් ගණන් කරන්නේ අපි සාමාන්‍යයෙන් භාවිතා කරන දහයේ පාදයෙන් නොවන බවත්, එක් පියවරකින් අනික් පියවරට පාදය තුනකින් වැඩිවන බවත්.

418 x 518 =1218

421 x 621 = 1321

424 x 724 = 1428

……….

දැන් ලිපියේ ඊළඟ කොටසට

බක වරක් චක්කරේ’, උසස් අධ්‍යාපන ආයතනවල නවක වදයේ තියෙන ප්‍රසිද්ධ අංගයක්. හැබැයි වෙන ඒවගේ හැටියට බක වරක් චක්කරෙන් බේරුණොත් ඒකත් ලොකු දෙයක්.  ලිපිය ලියන්න කළින් හොයල බලද්දී දැක්කේ ආගිය කතා ලියන හසිත සහෝදරයා බක වරක් චක්කරේ‘ තවත් ස්වරූපයක් වන පුටු වරක් චක්කරයක් ගැන ඉතාම රසවත් ලිපියක් ලියලා තියෙනවා කියලා. ඒක ගැන සංචාරකයා දැන ගත්තේ අදම තමා.

බක වරක් චක්කරේ එන්නේ මෙහෙමනේ,

බක x එක = බක යි

බක x දෙක = බකබක යි

බක x තුන = බකබකබක යි

බක x හතර = බකබකබකබක යි

……

ඔන්න එක දවසක් උසස් අධ්‍යාපන ආයතනයක ආපන ශාලාවක ජ්‍යෙෂ්ඨ උත්තමයෙක් ජුන්නෙක්ගෙන් බක චක්කරේ පාඩම් ගන්නවාලු.  මේක ඇහුණලු ළඟින් ගිය ගණිත ආචාර්යයවරයෙකුට.  එයා ඇවිල්ලා ජුන්නාව නිදහස් කරලා ඇරලා ජ්‍යෙෂ්ඨයට  දුන්නලු පැවරුමක්..

බක වරක් චක්කරය සපුරා ලන පරිදි බක අර්ථ දක්වන්න කියලා

ජ්‍යෙෂ්ඨය උත්තමයට අනුකම්පාවක් වශයෙන් කට්ටියට උත්සාහ කරලා බලන්න පුළුවන්. ටිකක් විතර ළඟින් යන උත්තරයක් තියෙනවා.

පයිතගරස් ගස

3 Comments

2010 අවුරුද්දත් ඉවර වේගෙන එනවා. 2010 ඉලක්කමත් එක්කම සංචාරකයාගේ මතකයට එන්නේ ආතර් සී ක්ලාක් මහත්මයා රචනා කළ ‘2010, A Space Odyssey’ කියන පොත. සිංහල පරිවර්තනය ‘2010 අභ්‍යාවකාශ වීර චාරිකාව’ නමින් කළා ඒස්.ඒම් බන්දුසීල මහත්මයා.

පොතේ හැටියට නම් මේ වෙද්දී මින්ස්සු බ්‍රහස්පති ආසන්නයට මිනිසුන් සහිත අභ්‍යවකාශ යානා යවන තත්වෙකයි ඉන්නේ.  ඔය පොතේ එක තැනකදී චැන්ග් කියන චීන ජාතික අජටාකාශගාමියා විස්තර කරනවා එයාලගේ යානාව බ්‍රහස්පතිගේ චන්ද්‍රයෙක් වන යුරෝපා මතදී විනාශ වුණු හැටි. ඒක විනාශ කරන ජීවියාව විස්තර කරන්න ඔහු උපමාවක් වශයෙන් ගන්නේ ‘ගුරුත්වය නිසා පැතලි වුණු නුග ගහක්’. 2001 කියවන්න කළින් 2010 කියවන්න ගිහින් විපරීත වෙලා හිටපු සංචාරකයා මේක දැක්කාම ටිකක් කල්පනා කළා මතකයි. මේ කියන්නේ අපි දන්න සාමාන්‍ය නුග ගහක්ද  නැත්නම් වෙන මොකක්වද්ද කියලා. ඇයි ඉතින් පොළවේ තියෙන නුග ගහකට ගුරුත්වයේ බලපෑම කොහොමත් තියෙනවානේ.

මේ කියන්න යන්නෙත් ඒ වගේ පැතළි ගහක් ගැනයි.  ගහේ නම තමයි ‘පයිතගරස් ගහ‘. මේකත් අයිති වෙන්නේ අර කළින් දවසක කියපු ‘Fractal Artවලටම තමයි.  වැඩිය විස්තර කරන්න දෙයක් නැහැනේ, රූපය දැක්කාම ගොඩ නඟන හැටි පැහැදිලි වෙනවානේ. මෙය මුලින්ම නිර්මාණය කරන්නේ ඕලන්ද ජාතික ගණිතඥයෙක් වන ඇල්බට් ඊ බොස්මන් 1942 දී.

රූපය ගොඩ නැඟුවේ  පහත යොමුවෙන් ලබා ගත්ත Mathematica ක්‍රමලේඛණය තරමක් සංස්කරණය කිරීමෙනුයි.

http://demonstrations.wolfram.com/PythagorasTree/

ෆර්මාගේ අවසන් ගැටළුව

13 Comments

මේක නම් ටිකක් විතර ප්‍රසිද්ධ කතාවක්. ගණිතය සම්බන්ධ කතන්දරවලදී මුලින්ම කියවෙන එකක්.

පියරේ ඩි ෆර්මා කියන්නේ 17වන ශත වර්ෂයේ විසූ ප්‍රංශ ජාතික ගණිතඥයෙක්. ෆර්මා ක්‍රි.ව 1665දී මිය යනවා. හැබ‍යි ඒ වෙද්දී ඔහු සිය අධ්‍යයන ප්‍රකාශයට පත් කරලා තිබුණේ නැහැ. ඉතින් ඔහුගේ පුතා වන ක්ලෙමන්ට් සැමුවෙල් ෆර්මා විසින් පියාගේ පොත්පත්, ලිපි, සටහන් ආදිය එකතු කරලා කියවලා බලනවා ප්‍රකාශයට පත් කරන්න. එවිට ඔහුට හමු වෙනවා තම පියා විසින් පරිශීලනය කරපු ඇලෙක්සැන්ඩ්‍රියානු ගණිතඥයෙක් වන ඩයිෆන්ටස්ගේ [Diophantus] Arithmatica කියන පොතේ පිටපත.  මේ පොතේ ෆර්මා තැනින් තැන සටහන් යොදලා තිබුණා. ගොඩක් වෙලාවට ඔහුගේ සටහන්වල තිබුණේ පොතේ එන ගැටළු අනුසාරයෙන් ඔහු ගොඩනංවපු ගැටළුත් ඒවයින් සමහරකට විසඳුමුත්.

1670දී සැමුවෙල් විසින් මෙම පොත නව සංස්කරණයක් වශයෙන් ප්‍රකාශයට පත් කරනවා පියරේ ඩි ෆර්මාගේ සටහන් එක්කම.  පොතේ එක් ගැටළුවක් වශයෙන් ඩයිෆන්ටස්ගේ විස්තර කරනවා පරිමේය වර්ග සංඛ්‍යාවක් තවත් වර්ග සංඛ්‍යා දෙකක ඒකතුවක් විදියට ලියන හැටි. එනම් k2=u2+v2 සමීකරණයට විසඳුමක් k දන්නා විට.  උදාහරණයක් වශයෙන් ඔහු ගන්නේ k= 4 අවස්ථාව.  ඔහු කියනවා  u=x හා v=(2x-4)වශයෙන් ගත්තාම අවශ්‍ය විසඳුම ගන්න පුළුවන් කියලා. මෙහිදී v තෝරා ගැනීමේදී සපුරාලිය යුතු කොන්දේසිය වන්නේ එය u [නැත්නම් x වල] ඕනෑම ගුණාකාරයකින් k අඩු කිරීමෙන් සෑදෙන සංඛ්‍යාවක වර්ගය විය යුතු බවයි. එතකොට

x2 + (2x-4)2 = 42

=>   x2 + 4x2-16x+16 = 16

=>   5x2 -16x = 0

=>    x(5x-16) = 0

=>   x = 0 හෝ x = 16/5

මෙහි x=0 අවශ්‍ය උත්තරය නෙවෙයි. එය අර කලින් දවසක කිව්වා වගේ Trivial Answer එකක්. ඒ හින්දා අවශ්‍ය උත්තර දෙක වශයෙන්  u=16/5 සහ v=12/5 ලැබෙනවා.  එනම් (16/5)2 + (12/5)2 = 42 . පොතේ පියරේ ඩි ෆර්මා මේ ගැටළුව ළඟින් මෙහෙම සඳහනක් දානවා.

මම ඉතාම අපූර්ව සොයා ගැනීමක් කළා. එනම් ඝනජ සංඛ්‍යාවක් තවත් ඝනජ සංඛ්‍යා දෙකක එකතුවක් වශයෙන් ලිවිය නොහැකියි. හතරවන බලයක් තවත් හතරවන බල දෙකක එකතුවක් වශයෙන් ලිවිය නොහැකියි. සාධාරණ වශයෙන් කියනවා නම් දෙකෙන් ඉහළ ඕනෑම බලයක් තවත් එම බලයේ සංඛ්‍යා දෙකක එකතුවක් වශයෙන් ලිවිය නොහැකියි. ඔප්පු කිරීම අන්තර්ගත කිරීමට මෙම ඉඩ ප්‍රමාණවත් නොවේ.

වෙන විදියකින් කියනවා නම් ෆර්මා කියලා තිබ්බේ xn + yn = zn කියන සමීකරණයට බිංදුව නොවන  x, y, z ධන නිඛිල උත්තර නෑ n දෙකට වඩා විශාල ධන නිඛිලයක් වෙන අවස්ථාවට. n=2 වෙන අවස්ථාවට උත්තර තිබෙන බව ඒ වන විටත් ගණිතඥයෝ දැනන් හිටියා. ඒ තමයි පයිතගෝරියානු ත්‍රිත්ව.  උදාහරණයක් විදියට (3,4,5) දක්වන්න පුළුවන්. ඇත්තටම ඉහත විස්තර කළ ඩයිෆන්ටස් ක්‍රමයත් පයිතගෝරියානු ත්‍රිත්ව හොයා ගන්න යොදා ගන්න පුළුවන්.

කාලයත් එක්ක ෆර්මා ඉදිරිපත් කළ අනික් ගැටළු වලට විසඳුම් සොයා ගත්තත් ඉහත ගැටළුව විසඳන්න කාටවත් හැකිවුණේ නෑ. ඒ හින්දා තමයි මෙම ගැටළුව ෆර්මාගේ අවසන් ප්‍රමේයය” [Fermat’s Last Theorem]වශයෙන් ප්‍රසිද්ධ වුණේ.  අවසානයේදී බ්‍රිතාන්‍ය ජාතික ගණිතඥයෙක් වන Andrew Wiles විසින් 1995 දී මෙයට සාධනයක් ඉදිරිපත් කරනවා.

ඇත්තටම මෙම ගැටළුවට ෆර්මා ළඟ සාධනයක් තිබ්බද කියන අදටත් කවුරුත් දන්නේ නැහැ. Andrew Wiles ගේ සාධනය නූතන ගණිත සංකල්ප මත පදනම් වුණු එකක්. ඒ දැනුම ෆර්මා සතුව තිබුණා කියලා හිතන්න අමාරුයි.

තමන්ගේ අධ්‍යයන ප්‍රකාශයට පත් නොකළත් තමන් විසඳූ සමහර ගැටළු ලිපි මඟින් සමකාළීන ගණිතඥයින් වෙත අභියෝග වශයෙන් යවන පුරුද්දක් ෆර්මා ළඟ තිබුණා. ආසන්න වශයෙන් ෆර්මා Arithmaticaකියවපු කාලය වශයෙන් පිළි ගැනෙන්නේ ක්‍රි.ව 1630 යි. මෙයින් පසු n=3 සහ n=4 අවස්ථාවට ඉහත සමීකරණය ඔප්පු කරන්න අනික් ගණිතඥයන්ට යැව්වත් සධාරණ අවස්ථාව ඔප්පු කරන්න කියලා ෆර්මා ඔහු මිය යන තුරුත් කාටවත් කියලා නැහැ.

ඉතින් ඒ හින්දා බොහෝ දෙනා විශ්වාස කරනවා ෆර්මා සතුව මෙයට සාධනයක් තිබුණේ නැහැ කියලා. සමහර විට ඔහු තමන්ගේ සාධනයේ වැරැද්දක් පසුව සොයා ගන්න ඇති. එහෙමත් නැත්නම් ඔප්පු කරන්න පුළුවන් වෙයි කියලා අදහසක් හිතේ තියාගෙන සටහන් ලිව්වත් පසුව ඔහු තේරුම් ගන්න ඇති ඒ ආකාරයෙන් කරන්න බෑ කියලා. හැබැයි ඉතින් මේවා අදහස් විතරයි. හරිම සිද්ධිය කවුරුවත් දන්නෙත් නැහැ. ඉදිරියේදී දැන ගන්න හම්බ වෙයි කියලා හිතන්නත් අමාරුයි.

කලනයේ කලබගෑනිය

5 Comments

කලනය, ඉංග්‍රිසියෙන් කියනවා නම් Calculus කියන්නේ අනිකුත් ක්ෂේත්‍රවල  බහුලව භාවිතා වන ඒක් ගණිත අංශයක්.  ඇත්තටම කලනය නැත්නම් අද ලෝකය මීට වඩා හාත්පසින්ම වෙනස් වෙන්න පුළුවන්. භෞතික විද්‍යාව, රසායන විද්‍යාව, ආර්ථික විද්‍යාව, ජීව විද්‍යාව, සමාජ විද්‍යාව වගේම ඉංජිනේරු තාක්ෂණය, සංනිවේදන තාක්ෂණය, තොරතුරු තාක්ෂණය වගේ අංශ ගණනාවකම කලනයේ සෘජු භාවිතයන් දකින්න පුළුවන්.

ක්‍රිස්තු පූර්ව අවධිවල ඉඳලා කලනයට අදාළ යම් යම් අදහස් විවිධ ගණිතඥයන් අතර තිබුණත් අද කලනය කියල උගන්වන සංකල්ප  ක්‍රමාණුකූල ලෙස ගොඩ නැඟෙන්නේ දහ හත් වන ශත වර්ෂයේදියි.  දහ හත් වන සියවසේ අග භාගයේ යුරෝපීය ගණිතඥයන් දෙදෙනෙකු විසින් කලනයේ සංකල්ප ස්වාධීනව ගොඩනඟනවා. කලබගෑනිය ඇතිවන්නේ පසුකාලීනව මේ දෙදෙනා සහ ඔහුගේ අනුගාමිකයින් මුලින්ම කලනය සොයා ගත්තේ කවුරුන්ද කියන එකට මහා වාදයක් ඇති කර ගන්න නිසයි.

මෙයට අදාළ පළමු වැන්නා තමයි සර් අයිසෙක් නිව්ටන්. ඔහු ගැන ආයේ අමුතුවෙන් ලියන්න දෙයක් නෑ නේ. දෙවැන්නා තමයි ගොට්ෆ්‍රිඩ් ලීබ්නස්. මොහු සර් අයිසෙක් නිව්ටන්ට සාපේක්ෂව ටිකක් විතර අඩුවෙන් කියවෙන කෙනෙක් හින්දා පොඩි විස්තරයක් කියන්නම්. ගොට්ෆ්‍රිඩ් ලීබ්නස්  කියන්නේ ක්‍රි.ව 1646-1716 කියන කාල පරාසයේ ජීවත් වූ ජර්මන් ජාතික ගණිතඥයෙක්. ගණිතයට, භෞතික විද්‍යාවට කරන ලද දායක වීම වලට අමතරම මොහුගේ නම කියවෙනවා වර්තමාන තොරතුරු තාක්ෂණයේදීත්. හේතුව තමයි ඔහු විසින් 1694 දී යාන්ත්‍රික ගණක යන්ත්‍රයක් නිපදවීම.

ගොට්ෆ්‍රිඩ් ලීබ්නස්  ක්‍රි.ව 1674-1684 කාලවකවානුවේ කලනයේ සංකල්ප ගොඩ නඟලා ක්‍රි.ව  1684 දී එවා ප්‍රසිද්ධ කරනවා.  අනික් පැත්තෙන් සර් අයිසෙක් නිව්ටන් ක්‍රි.ව  1666 ඉඳලා කලනයේ සංකල්ප ගොඩ නැංවීම වෙනුවෙන් වැඩ කරනවා. හැබැයි ඔහු එවා සම්පූර්ණයෙන් ප්‍රසිද්ධ කරන්නේ ක්‍රි.ව  1704 දී.  ඊට කළින් අවස්ථා දෙකකදී [ 1687 දී සහ 1693 දී ] තමාගේ සොයා ගැනීම අර්ධ වශයෙන් ප්‍රකාශයට පත් කරනවා.

මේ දෙදෙනා එකිනෙකාගේ අධ්‍යයන ගැන මඳ වශයෙන් දැන සිටියත් දෙදෙනාම එක ප්‍රථ්ඵලය කරා මාර්ග දෙකකින් ගමන් කරන බව තේරුම් ගත්තේ නෑ. ඒකට ඒ කාලේ සංනිවේදනයේ තිබුණු දුර්වලතාත් හේතුවක් වුණා කියලා කියනවා. අද කාලේ නම් යමක් හොයා ගත්තාම අන්තර්ජාලයෙ පළ කළාම ලෝකයම දැන ගන්නවා. කොහොම හරි කලනයේ අයිතිය සම්බන්ධයෙන් ක්‍රි.ව 1700-1715 කාලයේ සෑහෙන විවාදයක් ඇති වෙනවා. ඒවකට රාජකීය සංගමයේ සභාපතිව සර් අයිසෙක් නිව්ටන් ට බොහෝ දෙනෙක්ගේ සහයෝගය ලැබුණා. හැබැයි ලීබ්නසුත් අත අරින්නේ නෑ, ඔහු තමගේ පුද්ගලික දින සටහන් පෙන්නලා සාධක ඉදිරිපත් කළා තමන් සර් අයිසෙක් නිව්ටන්ගෙන් ස්වායක්තව වෙනමම මාර්ගයක් ඔස්සේ ගමන් කිරීමෙන් කලනය සොයා ගත් බවට.  ලීබ්නස් කලනයට වෙනමම දායක වුණු බවට පිළි ගැනීම ලැබෙන්නේ ඔහුගේ මරණයෙනුත් පස්සෙයි. වර්තමානයේ කලනයේ බහුලව භාවිතා වන dy/dx, ∫ වැනි සංකේත ලීබ්නස් විසින් හඳුන්වා දුන් ඒවා වන අතර ÿ වැනි සංකේත නිව්ටන් විසින් හඳුන්වා දුන් ඒවා වෙනවා.

මේ සම්බන්ධයෙන් නීල් ස්ටීවන්සන්ගේ “The Baroque Cycle කියන තුන් ඈඳුදු  නවතකාතාවේ සෑහෙන විස්තරයක් කියලා තියෙනවා කියල සංචාරකයා අහලා තියෙනවා. වෙළුම් තුනකින් යුතු මෙම දීර්ඝ නවකතාව පොත් 8කින් යුක්තයි. තවමත් සංචාරකයා කියවලා තියෙන්නේ පළමු වෙළුමේ පළමු පොත වන “Quicksilver” කියන එක විතරයි.  පොත ගැන පොඩ්ඩක් කියනවා නම් සමකාලීන විද්‍යාඥයන්, ගණිතඥයන් වන  ගොට්ෆ්‍රිඩ් ලීබ්නස්  ,අයිසෙක් නිව්ටන්, රොබට් හූක්, රොබට් බොයිල් වැන්නවුන් මේ පොතේ එන චරිත. භාෂා විලාශය නම් ටිකක් විතර දීර්ඝයි. ඒ වුණත් කතාව නම් හරිම සිත්ගන්නාසුළුයි.

Older Entries