ෆර්මාගේ අවසන් ගැටළුව

13 Comments

මේක නම් ටිකක් විතර ප්‍රසිද්ධ කතාවක්. ගණිතය සම්බන්ධ කතන්දරවලදී මුලින්ම කියවෙන එකක්.

පියරේ ඩි ෆර්මා කියන්නේ 17වන ශත වර්ෂයේ විසූ ප්‍රංශ ජාතික ගණිතඥයෙක්. ෆර්මා ක්‍රි.ව 1665දී මිය යනවා. හැබ‍යි ඒ වෙද්දී ඔහු සිය අධ්‍යයන ප්‍රකාශයට පත් කරලා තිබුණේ නැහැ. ඉතින් ඔහුගේ පුතා වන ක්ලෙමන්ට් සැමුවෙල් ෆර්මා විසින් පියාගේ පොත්පත්, ලිපි, සටහන් ආදිය එකතු කරලා කියවලා බලනවා ප්‍රකාශයට පත් කරන්න. එවිට ඔහුට හමු වෙනවා තම පියා විසින් පරිශීලනය කරපු ඇලෙක්සැන්ඩ්‍රියානු ගණිතඥයෙක් වන ඩයිෆන්ටස්ගේ [Diophantus] Arithmatica කියන පොතේ පිටපත.  මේ පොතේ ෆර්මා තැනින් තැන සටහන් යොදලා තිබුණා. ගොඩක් වෙලාවට ඔහුගේ සටහන්වල තිබුණේ පොතේ එන ගැටළු අනුසාරයෙන් ඔහු ගොඩනංවපු ගැටළුත් ඒවයින් සමහරකට විසඳුමුත්.

1670දී සැමුවෙල් විසින් මෙම පොත නව සංස්කරණයක් වශයෙන් ප්‍රකාශයට පත් කරනවා පියරේ ඩි ෆර්මාගේ සටහන් එක්කම.  පොතේ එක් ගැටළුවක් වශයෙන් ඩයිෆන්ටස්ගේ විස්තර කරනවා පරිමේය වර්ග සංඛ්‍යාවක් තවත් වර්ග සංඛ්‍යා දෙකක ඒකතුවක් විදියට ලියන හැටි. එනම් k2=u2+v2 සමීකරණයට විසඳුමක් k දන්නා විට.  උදාහරණයක් වශයෙන් ඔහු ගන්නේ k= 4 අවස්ථාව.  ඔහු කියනවා  u=x හා v=(2x-4)වශයෙන් ගත්තාම අවශ්‍ය විසඳුම ගන්න පුළුවන් කියලා. මෙහිදී v තෝරා ගැනීමේදී සපුරාලිය යුතු කොන්දේසිය වන්නේ එය u [නැත්නම් x වල] ඕනෑම ගුණාකාරයකින් k අඩු කිරීමෙන් සෑදෙන සංඛ්‍යාවක වර්ගය විය යුතු බවයි. එතකොට

x2 + (2x-4)2 = 42

=>   x2 + 4x2-16x+16 = 16

=>   5x2 -16x = 0

=>    x(5x-16) = 0

=>   x = 0 හෝ x = 16/5

මෙහි x=0 අවශ්‍ය උත්තරය නෙවෙයි. එය අර කලින් දවසක කිව්වා වගේ Trivial Answer එකක්. ඒ හින්දා අවශ්‍ය උත්තර දෙක වශයෙන්  u=16/5 සහ v=12/5 ලැබෙනවා.  එනම් (16/5)2 + (12/5)2 = 42 . පොතේ පියරේ ඩි ෆර්මා මේ ගැටළුව ළඟින් මෙහෙම සඳහනක් දානවා.

මම ඉතාම අපූර්ව සොයා ගැනීමක් කළා. එනම් ඝනජ සංඛ්‍යාවක් තවත් ඝනජ සංඛ්‍යා දෙකක එකතුවක් වශයෙන් ලිවිය නොහැකියි. හතරවන බලයක් තවත් හතරවන බල දෙකක එකතුවක් වශයෙන් ලිවිය නොහැකියි. සාධාරණ වශයෙන් කියනවා නම් දෙකෙන් ඉහළ ඕනෑම බලයක් තවත් එම බලයේ සංඛ්‍යා දෙකක එකතුවක් වශයෙන් ලිවිය නොහැකියි. ඔප්පු කිරීම අන්තර්ගත කිරීමට මෙම ඉඩ ප්‍රමාණවත් නොවේ.

වෙන විදියකින් කියනවා නම් ෆර්මා කියලා තිබ්බේ xn + yn = zn කියන සමීකරණයට බිංදුව නොවන  x, y, z ධන නිඛිල උත්තර නෑ n දෙකට වඩා විශාල ධන නිඛිලයක් වෙන අවස්ථාවට. n=2 වෙන අවස්ථාවට උත්තර තිබෙන බව ඒ වන විටත් ගණිතඥයෝ දැනන් හිටියා. ඒ තමයි පයිතගෝරියානු ත්‍රිත්ව.  උදාහරණයක් විදියට (3,4,5) දක්වන්න පුළුවන්. ඇත්තටම ඉහත විස්තර කළ ඩයිෆන්ටස් ක්‍රමයත් පයිතගෝරියානු ත්‍රිත්ව හොයා ගන්න යොදා ගන්න පුළුවන්.

කාලයත් එක්ක ෆර්මා ඉදිරිපත් කළ අනික් ගැටළු වලට විසඳුම් සොයා ගත්තත් ඉහත ගැටළුව විසඳන්න කාටවත් හැකිවුණේ නෑ. ඒ හින්දා තමයි මෙම ගැටළුව ෆර්මාගේ අවසන් ප්‍රමේයය” [Fermat’s Last Theorem]වශයෙන් ප්‍රසිද්ධ වුණේ.  අවසානයේදී බ්‍රිතාන්‍ය ජාතික ගණිතඥයෙක් වන Andrew Wiles විසින් 1995 දී මෙයට සාධනයක් ඉදිරිපත් කරනවා.

ඇත්තටම මෙම ගැටළුවට ෆර්මා ළඟ සාධනයක් තිබ්බද කියන අදටත් කවුරුත් දන්නේ නැහැ. Andrew Wiles ගේ සාධනය නූතන ගණිත සංකල්ප මත පදනම් වුණු එකක්. ඒ දැනුම ෆර්මා සතුව තිබුණා කියලා හිතන්න අමාරුයි.

තමන්ගේ අධ්‍යයන ප්‍රකාශයට පත් නොකළත් තමන් විසඳූ සමහර ගැටළු ලිපි මඟින් සමකාළීන ගණිතඥයින් වෙත අභියෝග වශයෙන් යවන පුරුද්දක් ෆර්මා ළඟ තිබුණා. ආසන්න වශයෙන් ෆර්මා Arithmaticaකියවපු කාලය වශයෙන් පිළි ගැනෙන්නේ ක්‍රි.ව 1630 යි. මෙයින් පසු n=3 සහ n=4 අවස්ථාවට ඉහත සමීකරණය ඔප්පු කරන්න අනික් ගණිතඥයන්ට යැව්වත් සධාරණ අවස්ථාව ඔප්පු කරන්න කියලා ෆර්මා ඔහු මිය යන තුරුත් කාටවත් කියලා නැහැ.

ඉතින් ඒ හින්දා බොහෝ දෙනා විශ්වාස කරනවා ෆර්මා සතුව මෙයට සාධනයක් තිබුණේ නැහැ කියලා. සමහර විට ඔහු තමන්ගේ සාධනයේ වැරැද්දක් පසුව සොයා ගන්න ඇති. එහෙමත් නැත්නම් ඔප්පු කරන්න පුළුවන් වෙයි කියලා අදහසක් හිතේ තියාගෙන සටහන් ලිව්වත් පසුව ඔහු තේරුම් ගන්න ඇති ඒ ආකාරයෙන් කරන්න බෑ කියලා. හැබැයි ඉතින් මේවා අදහස් විතරයි. හරිම සිද්ධිය කවුරුවත් දන්නෙත් නැහැ. ඉදිරියේදී දැන ගන්න හම්බ වෙයි කියලා හිතන්නත් අමාරුයි.

මතක ප්‍රථමක මතක

2 Comments

ප්‍රථමක සංඛ්‍යා තරම් ගණිත ලෝකයේ කතාබහට ලක්වුණු ඉලක්කම් වර්ගයක් තවත් නැතුව ඇති. ප්‍රථමක සංඛ්‍යා ගැන ලියන්න බොහෝ කරුණු තියෙනවා. මේ ලිපියෙන් ලියන්න යන්නේ ප්‍රථමක සංඛ්‍යා සම්බධයෙන් එන සුප්‍රසිද්ධ අනුමිතින් දෙකක් ගැනයි.

පහේ ශිෂ්‍යත්ව පංතිවලදී ඉගෙන ගත්තා මතක ඇතිනේ එක හැරුණු කොට අනික් ඕනෑම ඉලක්කමක් ප්‍රථමක සංඛ්‍යා එකක හෝ කිහිපයක් ගුණිතයක් විදියට ලියන්න පුළුවන් බව. හැබැයි මේකට අංක ගණිතයේ මූලික සිද්ධාන්තය [Fundamental Theorem of Arithmetic] කියලා කියනවා කියලා සංචාරකයා දැන ගත්තේ පාසල් ජීවිතයත් හමාර වුණාට පස්සේ. මෙහි සාධනය මුලින්ම යුක්ලිඩ් විසින් ඉදිරිපත් කරලා තියෙනවා. වඩාත් නිවැරදි සාධනයක් පසු කාලීනව ෆෙඩ්‍රරික් ගවුස් විසින් ගොඩ නඟලා තියෙනවා. ඊළඟට කියන්න තියෙන්නේ ප්‍රථමක සංඛ්‍යා අනන්ත සංඛ්‍යාවක් තියෙනවා කියන එකයි. මේකටත් බොහොම අපූරු සරල සාධනයක් ඉදිරිපත් කරල තියෙනවා යුක්ලිඩ්. දැන් ලියනවා කියපු අනුමිතින් දෙකට එමුකෝ.

පළමු අනුමිතිය තමයි, නිවුන් ප්‍රථමක අනන්ත සංඛ්‍යාවක් තියෙනවා කියන එක (Twin Prime Conjecture). නිවුන් ප්‍රථමක සංඛ්‍යා කියලා කියන්නේ වෙනස 2ක් වෙන ප්‍රථමක සංඛ්‍යා වලටයි.

උදාහරණයක් විදියට 3 සහ 5 දැක්විය හැකියි.

වඩාත් විශාල උදාහරණයකට යනවා නම් 7877 සහ 7879 දැක්විය හැකියි.

ඊටත් වඩා විශාල උදාහරණයකට යනවා නම් 15485651 සහ 15485653 දැක්විය හැකියි.

මේ විදියට තමන්ට කැමති තරම් විශාල නිවුන් ප්‍රථමක යුගල හොයා  ගන්න පුළුවන්. පරිඝනක ඇසුරින් මෙසේ අවශ්‍ය තරම් විශාල ප්‍රථමක යුගල සොයා ගන්න පුළුවන් වුණාට මෙවැනි යුගල අනන්තයක් තියෙනවා කියලා තාම ගණිතමය සාධනයක් ඉදිරිපත් වෙලා නෑ. මේක මුලින්ම ඉදිරිපත් කළේ කව්ද කියන එක නම් ට්කක් විවාදාපන්නයි. සංචාරකයා ඒ ගැන කියන්න වැඩිය දන්නේ නැති නිසා මෙහි ලියන්නේ නෑ.

දෙවෙනි අනුමිතිය තමයි  Goldbach’s conjecture කියන එක. මෙයින් කියන්නේ ඕනෑම ඉරට්ටේ සංඛ්‍යාවක් [2 හැර] ප්‍රථමක සංඛ්‍යා දෙකක එකතුවක් විදියට ලියන්න පුළුවන් කියලයි.

උදාහරණ විදියට

24=23+2

100=47+53

100000= 1103+98897

මෙය මුලින්ම ලොවට ඉදිරිපත් කරලා තියෙන්නේ ජර්මානු ජාතික ගණිතඥයෙක් වන Christian Goldbach. හැබැයි මුල් ඉදිරිපත් කිරීම නම් ටිකක් විතර වෙනස්, මොකද ඒ කාලේ 1ත් ප්‍රථමක සංඛ්‍යාවක් විදියෙට ගණන් අරගෙන තියෙන නිසා.

ප.ලි: කළින් දවසක් ලියපු සිප ගන්න වෘත්ත ලිපිය මතක ඇතිනේ. ඒ ලිපිය ලියද්දී එහෙම සැකසූ වෘත්ත ඇසුරෙන් රටාවක් දාන්න හිතන් හිටියත් කාල වෙලාව මදි නිසා කර ගන්න පුළුවන් වුණේ නැහැ. Mathematica එක්ක පොඩ්ඩක් ඔට්ටු වෙලා එකක් හදා ගත්තා. ඒක තමයි මේ පහතින් තියෙන්නේ.