ෆර්මාගේ අවසන් ගැටළුව

13 Comments

මේක නම් ටිකක් විතර ප්‍රසිද්ධ කතාවක්. ගණිතය සම්බන්ධ කතන්දරවලදී මුලින්ම කියවෙන එකක්.

පියරේ ඩි ෆර්මා කියන්නේ 17වන ශත වර්ෂයේ විසූ ප්‍රංශ ජාතික ගණිතඥයෙක්. ෆර්මා ක්‍රි.ව 1665දී මිය යනවා. හැබ‍යි ඒ වෙද්දී ඔහු සිය අධ්‍යයන ප්‍රකාශයට පත් කරලා තිබුණේ නැහැ. ඉතින් ඔහුගේ පුතා වන ක්ලෙමන්ට් සැමුවෙල් ෆර්මා විසින් පියාගේ පොත්පත්, ලිපි, සටහන් ආදිය එකතු කරලා කියවලා බලනවා ප්‍රකාශයට පත් කරන්න. එවිට ඔහුට හමු වෙනවා තම පියා විසින් පරිශීලනය කරපු ඇලෙක්සැන්ඩ්‍රියානු ගණිතඥයෙක් වන ඩයිෆන්ටස්ගේ [Diophantus] Arithmatica කියන පොතේ පිටපත.  මේ පොතේ ෆර්මා තැනින් තැන සටහන් යොදලා තිබුණා. ගොඩක් වෙලාවට ඔහුගේ සටහන්වල තිබුණේ පොතේ එන ගැටළු අනුසාරයෙන් ඔහු ගොඩනංවපු ගැටළුත් ඒවයින් සමහරකට විසඳුමුත්.

1670දී සැමුවෙල් විසින් මෙම පොත නව සංස්කරණයක් වශයෙන් ප්‍රකාශයට පත් කරනවා පියරේ ඩි ෆර්මාගේ සටහන් එක්කම.  පොතේ එක් ගැටළුවක් වශයෙන් ඩයිෆන්ටස්ගේ විස්තර කරනවා පරිමේය වර්ග සංඛ්‍යාවක් තවත් වර්ග සංඛ්‍යා දෙකක ඒකතුවක් විදියට ලියන හැටි. එනම් k2=u2+v2 සමීකරණයට විසඳුමක් k දන්නා විට.  උදාහරණයක් වශයෙන් ඔහු ගන්නේ k= 4 අවස්ථාව.  ඔහු කියනවා  u=x හා v=(2x-4)වශයෙන් ගත්තාම අවශ්‍ය විසඳුම ගන්න පුළුවන් කියලා. මෙහිදී v තෝරා ගැනීමේදී සපුරාලිය යුතු කොන්දේසිය වන්නේ එය u [නැත්නම් x වල] ඕනෑම ගුණාකාරයකින් k අඩු කිරීමෙන් සෑදෙන සංඛ්‍යාවක වර්ගය විය යුතු බවයි. එතකොට

x2 + (2x-4)2 = 42

=>   x2 + 4x2-16x+16 = 16

=>   5x2 -16x = 0

=>    x(5x-16) = 0

=>   x = 0 හෝ x = 16/5

මෙහි x=0 අවශ්‍ය උත්තරය නෙවෙයි. එය අර කලින් දවසක කිව්වා වගේ Trivial Answer එකක්. ඒ හින්දා අවශ්‍ය උත්තර දෙක වශයෙන්  u=16/5 සහ v=12/5 ලැබෙනවා.  එනම් (16/5)2 + (12/5)2 = 42 . පොතේ පියරේ ඩි ෆර්මා මේ ගැටළුව ළඟින් මෙහෙම සඳහනක් දානවා.

මම ඉතාම අපූර්ව සොයා ගැනීමක් කළා. එනම් ඝනජ සංඛ්‍යාවක් තවත් ඝනජ සංඛ්‍යා දෙකක එකතුවක් වශයෙන් ලිවිය නොහැකියි. හතරවන බලයක් තවත් හතරවන බල දෙකක එකතුවක් වශයෙන් ලිවිය නොහැකියි. සාධාරණ වශයෙන් කියනවා නම් දෙකෙන් ඉහළ ඕනෑම බලයක් තවත් එම බලයේ සංඛ්‍යා දෙකක එකතුවක් වශයෙන් ලිවිය නොහැකියි. ඔප්පු කිරීම අන්තර්ගත කිරීමට මෙම ඉඩ ප්‍රමාණවත් නොවේ.

වෙන විදියකින් කියනවා නම් ෆර්මා කියලා තිබ්බේ xn + yn = zn කියන සමීකරණයට බිංදුව නොවන  x, y, z ධන නිඛිල උත්තර නෑ n දෙකට වඩා විශාල ධන නිඛිලයක් වෙන අවස්ථාවට. n=2 වෙන අවස්ථාවට උත්තර තිබෙන බව ඒ වන විටත් ගණිතඥයෝ දැනන් හිටියා. ඒ තමයි පයිතගෝරියානු ත්‍රිත්ව.  උදාහරණයක් විදියට (3,4,5) දක්වන්න පුළුවන්. ඇත්තටම ඉහත විස්තර කළ ඩයිෆන්ටස් ක්‍රමයත් පයිතගෝරියානු ත්‍රිත්ව හොයා ගන්න යොදා ගන්න පුළුවන්.

කාලයත් එක්ක ෆර්මා ඉදිරිපත් කළ අනික් ගැටළු වලට විසඳුම් සොයා ගත්තත් ඉහත ගැටළුව විසඳන්න කාටවත් හැකිවුණේ නෑ. ඒ හින්දා තමයි මෙම ගැටළුව ෆර්මාගේ අවසන් ප්‍රමේයය” [Fermat’s Last Theorem]වශයෙන් ප්‍රසිද්ධ වුණේ.  අවසානයේදී බ්‍රිතාන්‍ය ජාතික ගණිතඥයෙක් වන Andrew Wiles විසින් 1995 දී මෙයට සාධනයක් ඉදිරිපත් කරනවා.

ඇත්තටම මෙම ගැටළුවට ෆර්මා ළඟ සාධනයක් තිබ්බද කියන අදටත් කවුරුත් දන්නේ නැහැ. Andrew Wiles ගේ සාධනය නූතන ගණිත සංකල්ප මත පදනම් වුණු එකක්. ඒ දැනුම ෆර්මා සතුව තිබුණා කියලා හිතන්න අමාරුයි.

තමන්ගේ අධ්‍යයන ප්‍රකාශයට පත් නොකළත් තමන් විසඳූ සමහර ගැටළු ලිපි මඟින් සමකාළීන ගණිතඥයින් වෙත අභියෝග වශයෙන් යවන පුරුද්දක් ෆර්මා ළඟ තිබුණා. ආසන්න වශයෙන් ෆර්මා Arithmaticaකියවපු කාලය වශයෙන් පිළි ගැනෙන්නේ ක්‍රි.ව 1630 යි. මෙයින් පසු n=3 සහ n=4 අවස්ථාවට ඉහත සමීකරණය ඔප්පු කරන්න අනික් ගණිතඥයන්ට යැව්වත් සධාරණ අවස්ථාව ඔප්පු කරන්න කියලා ෆර්මා ඔහු මිය යන තුරුත් කාටවත් කියලා නැහැ.

ඉතින් ඒ හින්දා බොහෝ දෙනා විශ්වාස කරනවා ෆර්මා සතුව මෙයට සාධනයක් තිබුණේ නැහැ කියලා. සමහර විට ඔහු තමන්ගේ සාධනයේ වැරැද්දක් පසුව සොයා ගන්න ඇති. එහෙමත් නැත්නම් ඔප්පු කරන්න පුළුවන් වෙයි කියලා අදහසක් හිතේ තියාගෙන සටහන් ලිව්වත් පසුව ඔහු තේරුම් ගන්න ඇති ඒ ආකාරයෙන් කරන්න බෑ කියලා. හැබැයි ඉතින් මේවා අදහස් විතරයි. හරිම සිද්ධිය කවුරුවත් දන්නෙත් නැහැ. ඉදිරියේදී දැන ගන්න හම්බ වෙයි කියලා හිතන්නත් අමාරුයි.

රුසියනු පොත් මතක සහ අප්‍රසිද්ධ ගණනය කිරීමක්

1 Comment

ලියන්න පටන් ගද්දිම හිතෙනවා ලිපිය ටිකක් දික් වෙයි කියලා. මේ ලිපිය ලියන්න නිමිති වෙච්ච කාරණා දෙකක් තියෙනවා. පළමුවැන්න තමයි සංචාරකයා දාපු පහුගිය ලිපි දෙකකටම ආපු කමෙන්ට්වල තිබ්බ රුසියානු පොත් ගැන සඳහන්. ඒවා දැක්කාම සංචාරකයටත් පොඩි කාලේ කියවපු රුසියානු පොත් මතක් වුණා.

සංචාරකයා පොඩි කාලේ රූප පිටු, ඝනකම් කවර තියෙන සිංහල පොත් හරිම අඩුවෙනුයි තිබ්බේ. ඇත්තටම කියනවා නම රුසියානු පොත් ඇරෙන්න එහෙම පොත් හොයා ගන්න තිබ්බෙම නැති තරම්. ඒ නිසාම රුසියානු පොත් ඒ කාලේ ගොඩාක් ජනප්‍රිය වුණා. රුසියානු පොත් ජනප්‍රිය වෙන්න අනික හේතුව තමයි ඒවයේ මිල සාපේක්ෂව අඩු වීම.

ඔය අතරින් සංචාරකයාගෙ මතකයේ රැඳිණු පොත කිහිපයක් තියෙනවා. ඒවා තමයි ‘හරිත වර්ණ දූපත’,’ ලස්සන මාළුවෝ’,’මිනිසුන් පෘථිවියේ හැඩය සොයා ගත් හැටි’ සහ ‘සීයාගේ ඇස් කණ්ණාඩි’. මේ පොත් ඔක්කොම ඝනකම් කවරයක් සහිතව ඔප කඩදාසියේ මුද්‍රණය කරපුවා. ඒවාගේ තිබ්බ වර්ණවත් රූප හරියට මැජික් වගේ, ඇයි ළමා පත්තර ඒ කාලේ මුද්‍රණය කලේ සාමාන්‍ය කඩදාසියේ. පොත් ගන්න ඒ කාලේ තිබුණු ඒකම ක්‍රමය තමයි පොත් ප්‍රදර්ශන, තාම හොඳට මතකයි තාත්තා ’මිනිසුන් පෘථිවියේ හැඩය සොයා ගත් හැටි’ පොත අරන් දුන්නේ මහපොළ ප්‍රදර්ශනයකදී. අනික් පොත් අම්මාගේ අනුග්‍රහයෙන් ඉස්කොලේ තිබුණු පොත් ප්‍රදර්ශන වලින් තමයි ගත්තේ.  හරියට ගාන බලා ගන්නේ නැතුව අම්මාගෙන් සල්ලි ඉල්ලගෙන ගිහිල්ලා ‘හරිත වර්ණ දූපත’ ගන්න සල්ලි මදි වුණු හැටි තාම මතකයි. ඒක ගන්න ඊළඟ අවුරුද්දේ පොත් ප්‍රදර්ශනය එනකන් ඉන්න වුණා.  මේ පොත්වල අනුවාදකයා ‘දැදිගම වී රුද්‍රිගු’ මහත්මයා නේද? හරියටම මතක කෙනෙක් ඉන්නවා නම් කරුණාකරලා කමෙන්ට් එකක් දාන්න.

කොහොම හරි ඔය කියන ’මිනිසුන් පෘථිවියේ හැඩය සොයා ගත් හැටි පොතේ එක තැනක තියෙනවා පුංචි ගණනය කිරීමක් දාලා එරටොස්තීනස් කියන ග්‍රීක ගණිතඥයා පෘථිවියේ අරය ආසන්නව හොයන හැටි. ඔය පොත කියවන කාළේ නම් ඔය ගණනය කිරීම තෙරුණේ නෑ.

මේ ගණනය කිරීමේ සෑහෙන දෝෂ තිබුණත් මෙය උපකල්පන මත කරන ආසන්න ගණනය කිරීම වලට ඉතාම හොඳ උදාහරණයක්. ටිකක් ප්‍රසිද්ධ ගණනය කිරීමක් හින්දා මේ ගැන මේ ලිපියේ දාන්න සංචාරකයා බලාපොරොත්තු වෙන්නේ නෑ.

දැන් එමුකෝ මේ ලිපිය දාන්න හේතු වුණු දෙවෙනි කාරණය. එයේ පෙරේදා ඩිස්කවරි චැනල් එකක් දිගින් දිගටම විකාශය වුණා ‘Into the Universe with Stephen Hawking’ කියන වැඩසටහන් මාලව.  මේක සංචාරකයාට හිතුණු විදියට නම් ඉතාම හොඳ වැඩසටහන් මාලවක්. ආචාර්යය ස්ටීවන් හෝකින් ඔහුගේ සංස්ලේශ කටහඬින් හැමෝටම තේරෙන විදියට විශ්වයේ ආරම්භය, පිටසක්වළ ජීවය, කාල තරණය, පෘථිවියේ ජීවයේ ආරම්භය ගැන කියලා දෙනවා. ඉතින් මේක බලලා ත්‍රිල් පිට සංචාරකයා ආචාර්යය ස්ටීවන් හෝකින්ගේ අළුත්ම පොත වන ‘The Grand Design‘ ගත්තා. ගත්තාට මොකද ඒක රූපවාහිනී වැඩසටහන් මාලාව තරම්ම සරල නෑ.  වැටහෙන ප්‍රමාණය අඩු වුනත් පොඩ්ඩ පොඩ්ඩ අමාරුවෙන් ඇදගෙන යනවා තාම. මේ පොතේ එක තැනක තියෙනවා කියන Aristarchus ග්‍රීක ගණිතඥයා පෘථිවියේ, හඳේ සහ සූර්යයාගේ සාපේක්ෂ විශාලත්වයන් සහ ඒවා අතර සාපේක්ෂ දුරවල් හෙව්වා කියලා. මේක ගැන ඉතින් සංචාරකයා ඉන්න ගමන් අන්තර්ජාලයේ හොයලා බැලුවා.

ඔහු හොයාගෙන තියෙනවා අඩ හඳ පේන දවසට පෘථිවිය, සූර්යයා සහ චන්ද්‍රයා  සෘජුකෝණී ත්‍රිකෝණයක පිහිටන බව. මේ වාගෙ දවසක පෘථිවිය සහ සූර්යයා අතර කෝණය ඔහු මැනලා තියෙනවා 870 කියලා. දැන් එතකොට මේ වගේ රූපයක් ගොඩ නඟන්න පුළුවන්නේ.

අපි  දුරවල් අතර අතර අනුපාතය ගණනය කරනවා නම්,

s.cos (870) =l

(s/l) = sec (870) =19.11

ඒ කියන්නේ පොළවේ සිට සූර්යයාට තියෙන දුර පොළවේ සිට හඳට තියෙන දුර ප්‍රමාණය වගේ 19 ගුණයක් කියලයි. හැබයි ඇත්ත අනුපාතය 390ක් වෙනවා. වෙනසට හේතුව තමයි කෝණය මිනීමේදී ඇති වෙලා තියෙන අඩුපාඩුව. සැබෑ කෝණ‍ය 900ට ඉතාමත් ආසන්නයි.  සෙක් ශ්‍රිතය කෝණය 900 කරා එලඹෙද්දී අනන්තයට යන නිසා ඉතා සුළු මිනුම් දෝෂයක් විශාල වෙනසක් ඇති කරනවා.  කියන්න ඕනේ අනික කාරණය තමයි ඔහු ජීවත් වුණේ ක්‍රි.පූ 310-230 කාලයේ. මේ වෙද්දී ත්‍රිකෝණමිතිය බිහිවෙලා තිබ්බේ නෑ. ඒ කියන්නේ අනුපාතයේ අගය ඉහත විදියට නෙවේ හොයලා තියෙන්නේ, ජ්‍යාමිතික ක්‍රමයකින්.

ඔහුගේ ගණනය කිරීම ගැන සම්පූර්ණ විස්තරය විකිපීඩියා පිටුවෙන් ගන්න පුළුවනි.

http://en.wikipedia.org/wiki/Aristarchus_On_the_Sizes_and_Distances