පොත් ප්‍රදර්ශනයේ කතා

2 Comments

අවුරුදු දෙකක්ම මග ඇරුණු පොත් ප්‍රදර්ශනය බලන්න සංචාරකයත් ගොඩ වැදුණා පටන් ගත්ත දවසෙම,ආයෙ දවසකුත් යන්න බලා ගෙන. එතන ඉද්දී වෙලාව යනවා දැනෙන්නෙම නැහැ, මේ සති අන්තයේ යන්නේ සම්පූර්ණම දවස ඉන්න බලාගෙන. කොහොමින් හරි මේ ලියන්න යන්නේ අහම්බෙන් දැකලා ගත්ත පොතක් ගැන සහ සංචාරකයා මුහුණ දීපු එක් සිද්ධියක් ගැන.

එක් ප්‍රදර්ශන කුටියක් තිබුණා ඒකේ ගොඩක්ම තිබුණේ ආතර් සී ක්ලාක් මහත්මයාගේ පොත්වල සිංහල පරිවර්තන. ආතර් සී ක්ලාක් මහත්මයාගේ බොහොමයක් පොත් කියවලා තිබුණත් ටිකක් කැරකී කැරකී හිටියේ ඔහුගේ විද්‍යා ප්‍රබන්ධවලට තියෙන ආසාවටම. එහෙම ඉද්දී දැක්කා පොතක් තියෙනවා “අවසන් සිද්ධාන්තය” කියලා. ලියලා තියෙන්නේ ආතර් සී ක්ලාක් සහ ෆෙඩ්‍රික් පෝල්. සිංහල පරිවර්තනය තත්සරණී බුලත්සිංහල. පසුකවරය දිහා බැලුවාම කතාවේ තියෙන්නේ “ෆර්මාගේ අවසන් ගැටළුව” විසඳන්න උත්සාහ කරන ශ්‍රි ලාංකික තරුණයෙක් ගැන සහ සමකාලීනව පෘථිවියට එල්ල වන පිටසක්වල ජීවීන්ගේ තර්ජනයන් ගැන. ඒ වගේම කියන්න ඕනේ මෙය ආතර් සී ක්ලාක් මහත්මයා ලියපු අවසාන විද්‍යා ප්‍රබන්ධයලු.

ඉතින් දෙපාරක් හිතන්නේ නැතුවම සංචාරකයා පොත මිලදී ගත්තා. ගණිතයට ආසා කරන අය අනිවාර්යයෙන් කැමති වෙන පොතක්. ගණිතයට සම්බන්ධ කතන්දර මෙන්ම විනෝදාත්මක ගණිත ගැටළු කිහිපයකුත් කතාව ඇතුලෙම තියෙනවා. ගන්න කැමති අයට පහත විස්තරය ප්‍රයෝජනවත් වෙයි.

ප්‍රදර්ශන කුටිය – G319

ප්‍රකාශකයින් – S & T Group

මිල – පොතේ ගහලා තියෙන්නේ රු.750 කියලා, හැබැයි වට්ටමක් හම්බ උනා හරියටම ගිය ගාන ඊට අඩුයි.

පොත ගැන වැඩි විස්තරයක් මෙතනදී සංචාරකයා සඳහන් කරන්නේ නෑ, කියවන කට්ටියට අසාධාරණයක් වෙන නිසා. ඉතාම හොඳ පොතක් කියල විතරක් කියන්නම්.

ප.ලි – ප්‍රදර්ශනය බාගෙට බලලා අඳුරු වැටීගෙන එන වෙලාවේ පාරෙන් එහා පැත්තේ රථ ගාලේ නවත්වලා තිබුණු වාහනේ ගාවට ආපුවාම ළඟ හිටපු කෙනෙක් කියනවා ඉස්සරහ රොදේ හුළං බැහැලා යන්න බැරි වෙන තරමට කියලා. බලපුවාම කතාව ඇත්ත. හැබැයි රෝදේ Dust Cap එක තිබුණෙත් නැහැ. වෙලාවට සංචාරකයා ගාවා ජංගම පොම්පයක් තිබ්බා වාහනේ ලයිටර් එක ගහන තැනට ගහලා වැඩ කරන්න පුළුවන්. එහෙම ගහලා ගෙනාවත් හරි ආයෙ නම් හුළං බැස්සේ නෑ දවස් 5ක් ගිහිල්ලත් !!!!

Advertisements

ෆර්මාගේ අවසන් ගැටළුව

13 Comments

මේක නම් ටිකක් විතර ප්‍රසිද්ධ කතාවක්. ගණිතය සම්බන්ධ කතන්දරවලදී මුලින්ම කියවෙන එකක්.

පියරේ ඩි ෆර්මා කියන්නේ 17වන ශත වර්ෂයේ විසූ ප්‍රංශ ජාතික ගණිතඥයෙක්. ෆර්මා ක්‍රි.ව 1665දී මිය යනවා. හැබ‍යි ඒ වෙද්දී ඔහු සිය අධ්‍යයන ප්‍රකාශයට පත් කරලා තිබුණේ නැහැ. ඉතින් ඔහුගේ පුතා වන ක්ලෙමන්ට් සැමුවෙල් ෆර්මා විසින් පියාගේ පොත්පත්, ලිපි, සටහන් ආදිය එකතු කරලා කියවලා බලනවා ප්‍රකාශයට පත් කරන්න. එවිට ඔහුට හමු වෙනවා තම පියා විසින් පරිශීලනය කරපු ඇලෙක්සැන්ඩ්‍රියානු ගණිතඥයෙක් වන ඩයිෆන්ටස්ගේ [Diophantus] Arithmatica කියන පොතේ පිටපත.  මේ පොතේ ෆර්මා තැනින් තැන සටහන් යොදලා තිබුණා. ගොඩක් වෙලාවට ඔහුගේ සටහන්වල තිබුණේ පොතේ එන ගැටළු අනුසාරයෙන් ඔහු ගොඩනංවපු ගැටළුත් ඒවයින් සමහරකට විසඳුමුත්.

1670දී සැමුවෙල් විසින් මෙම පොත නව සංස්කරණයක් වශයෙන් ප්‍රකාශයට පත් කරනවා පියරේ ඩි ෆර්මාගේ සටහන් එක්කම.  පොතේ එක් ගැටළුවක් වශයෙන් ඩයිෆන්ටස්ගේ විස්තර කරනවා පරිමේය වර්ග සංඛ්‍යාවක් තවත් වර්ග සංඛ්‍යා දෙකක ඒකතුවක් විදියට ලියන හැටි. එනම් k2=u2+v2 සමීකරණයට විසඳුමක් k දන්නා විට.  උදාහරණයක් වශයෙන් ඔහු ගන්නේ k= 4 අවස්ථාව.  ඔහු කියනවා  u=x හා v=(2x-4)වශයෙන් ගත්තාම අවශ්‍ය විසඳුම ගන්න පුළුවන් කියලා. මෙහිදී v තෝරා ගැනීමේදී සපුරාලිය යුතු කොන්දේසිය වන්නේ එය u [නැත්නම් x වල] ඕනෑම ගුණාකාරයකින් k අඩු කිරීමෙන් සෑදෙන සංඛ්‍යාවක වර්ගය විය යුතු බවයි. එතකොට

x2 + (2x-4)2 = 42

=>   x2 + 4x2-16x+16 = 16

=>   5x2 -16x = 0

=>    x(5x-16) = 0

=>   x = 0 හෝ x = 16/5

මෙහි x=0 අවශ්‍ය උත්තරය නෙවෙයි. එය අර කලින් දවසක කිව්වා වගේ Trivial Answer එකක්. ඒ හින්දා අවශ්‍ය උත්තර දෙක වශයෙන්  u=16/5 සහ v=12/5 ලැබෙනවා.  එනම් (16/5)2 + (12/5)2 = 42 . පොතේ පියරේ ඩි ෆර්මා මේ ගැටළුව ළඟින් මෙහෙම සඳහනක් දානවා.

මම ඉතාම අපූර්ව සොයා ගැනීමක් කළා. එනම් ඝනජ සංඛ්‍යාවක් තවත් ඝනජ සංඛ්‍යා දෙකක එකතුවක් වශයෙන් ලිවිය නොහැකියි. හතරවන බලයක් තවත් හතරවන බල දෙකක එකතුවක් වශයෙන් ලිවිය නොහැකියි. සාධාරණ වශයෙන් කියනවා නම් දෙකෙන් ඉහළ ඕනෑම බලයක් තවත් එම බලයේ සංඛ්‍යා දෙකක එකතුවක් වශයෙන් ලිවිය නොහැකියි. ඔප්පු කිරීම අන්තර්ගත කිරීමට මෙම ඉඩ ප්‍රමාණවත් නොවේ.

වෙන විදියකින් කියනවා නම් ෆර්මා කියලා තිබ්බේ xn + yn = zn කියන සමීකරණයට බිංදුව නොවන  x, y, z ධන නිඛිල උත්තර නෑ n දෙකට වඩා විශාල ධන නිඛිලයක් වෙන අවස්ථාවට. n=2 වෙන අවස්ථාවට උත්තර තිබෙන බව ඒ වන විටත් ගණිතඥයෝ දැනන් හිටියා. ඒ තමයි පයිතගෝරියානු ත්‍රිත්ව.  උදාහරණයක් විදියට (3,4,5) දක්වන්න පුළුවන්. ඇත්තටම ඉහත විස්තර කළ ඩයිෆන්ටස් ක්‍රමයත් පයිතගෝරියානු ත්‍රිත්ව හොයා ගන්න යොදා ගන්න පුළුවන්.

කාලයත් එක්ක ෆර්මා ඉදිරිපත් කළ අනික් ගැටළු වලට විසඳුම් සොයා ගත්තත් ඉහත ගැටළුව විසඳන්න කාටවත් හැකිවුණේ නෑ. ඒ හින්දා තමයි මෙම ගැටළුව ෆර්මාගේ අවසන් ප්‍රමේයය” [Fermat’s Last Theorem]වශයෙන් ප්‍රසිද්ධ වුණේ.  අවසානයේදී බ්‍රිතාන්‍ය ජාතික ගණිතඥයෙක් වන Andrew Wiles විසින් 1995 දී මෙයට සාධනයක් ඉදිරිපත් කරනවා.

ඇත්තටම මෙම ගැටළුවට ෆර්මා ළඟ සාධනයක් තිබ්බද කියන අදටත් කවුරුත් දන්නේ නැහැ. Andrew Wiles ගේ සාධනය නූතන ගණිත සංකල්ප මත පදනම් වුණු එකක්. ඒ දැනුම ෆර්මා සතුව තිබුණා කියලා හිතන්න අමාරුයි.

තමන්ගේ අධ්‍යයන ප්‍රකාශයට පත් නොකළත් තමන් විසඳූ සමහර ගැටළු ලිපි මඟින් සමකාළීන ගණිතඥයින් වෙත අභියෝග වශයෙන් යවන පුරුද්දක් ෆර්මා ළඟ තිබුණා. ආසන්න වශයෙන් ෆර්මා Arithmaticaකියවපු කාලය වශයෙන් පිළි ගැනෙන්නේ ක්‍රි.ව 1630 යි. මෙයින් පසු n=3 සහ n=4 අවස්ථාවට ඉහත සමීකරණය ඔප්පු කරන්න අනික් ගණිතඥයන්ට යැව්වත් සධාරණ අවස්ථාව ඔප්පු කරන්න කියලා ෆර්මා ඔහු මිය යන තුරුත් කාටවත් කියලා නැහැ.

ඉතින් ඒ හින්දා බොහෝ දෙනා විශ්වාස කරනවා ෆර්මා සතුව මෙයට සාධනයක් තිබුණේ නැහැ කියලා. සමහර විට ඔහු තමන්ගේ සාධනයේ වැරැද්දක් පසුව සොයා ගන්න ඇති. එහෙමත් නැත්නම් ඔප්පු කරන්න පුළුවන් වෙයි කියලා අදහසක් හිතේ තියාගෙන සටහන් ලිව්වත් පසුව ඔහු තේරුම් ගන්න ඇති ඒ ආකාරයෙන් කරන්න බෑ කියලා. හැබැයි ඉතින් මේවා අදහස් විතරයි. හරිම සිද්ධිය කවුරුවත් දන්නෙත් නැහැ. ඉදිරියේදී දැන ගන්න හම්බ වෙයි කියලා හිතන්නත් අමාරුයි.